Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer ; 23(1): 23, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38263157

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a major cause of cancer-related deaths worldwide, and chemoresistance is a major obstacle in its treatment. Despite advances in therapy, the molecular mechanism underlying chemoresistance in CRC is not fully understood. Recent studies have implicated the key roles of long noncoding RNAs (lncRNAs) in the regulation of CRC chemoresistance. METHODS: In this study, we investigated the role of the lncRNA LINC01852 in CRC chemoresistance. LINC01852 expression was evaluated in multiple CRC cohorts using quantitative reverse transcription PCR. We conducted in vitro and in vivo functional experiments using cell culture and mouse models. RNA pull-down, RNA immunoprecipitation, chromatin immunoprecipitation, and dual luciferase assays were used to investigate the molecular mechanism of LINC01852 in CRC. RESULTS: Our findings revealed that a lncRNA with tumor-inhibiting properties, LINC01852, was downregulated in CRC and inhibited cell proliferation and chemoresistance both in vitro and in vivo. Further mechanistic investigations revealed that LINC01852 increases TRIM72-mediated ubiquitination and degradation of SRSF5, inhibiting SRSF5-mediated alternative splicing of PKM and thereby decreasing the production of PKM2. Overexpression of LINC01852 induces a metabolic switch from aerobic glycolysis to oxidative phosphorylation, which attenuates the chemoresistance of CRC cells by inhibiting PKM2-mediated glycolysis. CONCLUSIONS: Our results demonstrate that LINC01852 plays an important role in repressing CRC malignancy and chemoresistance by regulating SRSF5-mediated alternative splicing of PKM, and that targeting the LINC01852/TRIM72/SRSF5/PKM2 signaling axis may represent a potential therapeutic strategy for CRC.


Assuntos
Neoplasias Colorretais , RNA Longo não Codificante , Animais , Camundongos , Humanos , Processamento Alternativo , Resistencia a Medicamentos Antineoplásicos , Carcinogênese , Transformação Celular Neoplásica , Imunoprecipitação da Cromatina
2.
Pathol Res Pract ; 253: 155065, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38171082

RESUMO

Gastric cancer (GC) is a rising global health issue, with increasing incidence and mortality rates. The pathogenesis of GC is highly complex and involves a combination of genetic and environmental factors. Therefore, identifying new genes and pathways that contribute to the development and progression of GC is essential for improving diagnosis and treatment outcomes. Long noncoding RNAs (lncRNAs) have recently emerged as a promising area of research in understanding the molecular mechanisms underlying various cancers, including GC. These RNA molecules are longer than 200 nucleotides and do not code proteins. Although initially considered "junk DNA", lncRNAs have been demonstrated to play significant roles in various biological processes, including cell proliferation, differentiation, and apoptosis, as well as in the pathogenesis of various cancers. In this study, we screened clinical specimens for a novel lncRNA, LINC00853, which showed high expression in GC tissues and promoted the proliferation, migration, and invasion of GC cells. Furthermore, in vivo experiments confirmed its ability to facilitate the growth and metastasis of GC. These results suggest that LINC00853 plays a crucial role in the development and progression of GC.


Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transformação Celular Neoplásica/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Movimento Celular/genética
3.
Exp Hematol Oncol ; 12(1): 79, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740214

RESUMO

BACKGROUND: Mantle cell lymphoma (MCL) is a rare B-cell non-Hodgkin lymphoma subtype which remains incurable despite multimodal approach including chemoimmunotherapy followed by stem cell transplant, targeted approaches such as the BTK inhibitor ibrutinib, and CD19 chimeric antigen receptor (CAR) T cells. CD74 is a nonpolymorphic type II integral membrane glycoprotein identified as an MHC class II chaperone and a receptor for macrophage migration inhibitory factor. Our group previously reported on CD74's abundant expression in MCL and its ability to increase via pharmacological inhibition of autophagosomal degradation. Milatuzumab, a fully humanized anti-CD74 monoclonal antibody, demonstrated significant activity in preclinical lymphoma models but failed to provide meaningful benefits in clinical trials mainly due to its short half-life. We hypothesized that targeting CD74 using a CAR-T cell would provide potent and durable anti-MCL activity. METHODS: We engineered a second generation anti-CD74 CAR with 4-1BB and CD3ζ signaling domains (74bbz). Through in silico and rational mutagenesis on the scFV domain, the 74bbz CAR was functionally optimized for superior antigen binding affinity, proliferative signaling, and cytotoxic activity against MCL cells in vitro and in vivo. RESULTS: Functionally optimized 74bbz CAR-T cells (clone 42105) induced significant killing of MCL cell lines, and primary MCL patient samples including one relapse after commercial CD19 CAR-T cell therapy with direct correlation between antigen density and cytotoxicity. It significantly prolonged the survival of an animal model established in NOD-SCIDγc-/- (NSG) mice engrafted with a human MCL cell line Mino subcutaneously compared to controls. Finally, while CD74 is also expressed on normal immune cell subsets, treatment with 74bbz CAR-T cells resulted in minimal cytotoxicity against these cells both in vitro and in vivo. CONCLUSIONS: Targeting CD74 with 74bbz CAR-T cells represents a new cell therapy to provide a potent and durable and anti-MCL activity.

4.
Pathol Res Pract ; 246: 154480, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37148838

RESUMO

Long noncoding RNAs (lncRNAs) play an important role in tumor progression. Small nucleolar RNA host gene 15 (SNHG15) is a lncRNA that has been confirmed to play an oncogenic role in multiple cancer types. However, its role in glycolysis and chemoresistance in colorectal cancer (CRC) is unclear. The expression of SNHG15 in CRC was analyzed using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases by bioinformatics methods. Cell Counting Kit-8 (CCK-8) and colony formation assays were used to evaluate cell viability. Cell sensitivity to 5-fluorouracil (5-FU) was detected by CCK-8. Glucose absorption and lactate production were used to evaluate the impact of SNHG15 on glycolysis. RNA-seq, real-time fluorescence quantitative reverse transcription PCR (RT-qPCR) and Western blotting (WB) were used to reveal the potential molecular mechanism of SNHG15 in CRC. SNHG15 was upregulated in CRC tissues compared with paired noncancerous tissues. Ectopic SNHG15 expression increased proliferation, 5-FU chemoresistance, and glycolysis in CRC cells. In contrast, SNHG15 knockdown inhibited CRC proliferation, 5-FU chemoresistance and glycolysis. Multiple pathways, including apoptosis and glycolysis, were potentially regulated by SNHG15 based on RNA-seq and pathway enrichment analyses. RT-qPCR and WB experiments confirmed that SNHG15 promoted the expression of TYMS, BCL2, GLUT1 and PKM2 in CRC cells. In conclusion, SNHG15 promotes 5-FU chemoresistance and glycolysis in CRC by potentially regulating the expression of TYMS, BCL2, GLUT1 and PKM2 and appears to be a new target for cancer therapy.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Humanos , Transportador de Glucose Tipo 1/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Proliferação de Células , Fluoruracila/farmacologia , Neoplasias Colorretais/patologia , Glicólise , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Longo não Codificante/genética , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica
5.
Pathol Res Pract ; 243: 154352, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36758416

RESUMO

Signaling receptor and transporter of retinol STRA6 (STRA6) plays a primary role in transporting retinol. Several studies have reported that STRA6 is involved in several pathways related to tumorigenesis and progression. However, the exact functions and mechanisms of STRA6 in colorectal cancer (CRC) remain unclear. In our work, STRA6 was highly up-regulated in CRC and promoted the proliferation of CRC cells. Additionally, we discovered that STRA6 suppresses apoptosis partly by controlling BCL2 expression, which in turn causes CRC to become resistant to LOHP treatment. Our study demonstrates that STRA6 is a potential prognostic factor and oncogene in CRC by promoting CRC growth and chemoresistance.


Assuntos
Neoplasias Colorretais , Vitamina A , Humanos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Regulação para Cima , Vitamina A/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Prognóstico , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Membrana/metabolismo
6.
Cancer Med ; 12(3): 3185-3200, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35908280

RESUMO

MicroRNAs (miRNAs) are a class of non-coding single-stranded RNA molecules with a length of approximately 18-25 nt nucleotides that regulate gene expression post-transcriptionally. MiR-204-5p originates from the sixth intron of the transient receptor potential cation channel subfamily M member 3 (TRPM3) gene. MiR-204-5p is frequently downregulated in various cancer types and is related to the clinicopathological characteristics and prognosis of cancer patients. So far, many studies have determined that miR-204-5p functions as a tumor suppressor for its extensive and powerful capacity to inhibit tumor proliferation, metastasis, autophagy, and chemoresistance in multiple cancer types. MiR-204-5p appears to be a promising prognostic biomarker and a therapeutic target for human cancers. This review summarized the latest advances on the role of miR-204-5p in human cancers.


Assuntos
MicroRNAs , Humanos , Linhagem Celular Tumoral , MicroRNAs/genética , Genes Supressores de Tumor , Prognóstico , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
7.
Mol Cancer ; 21(1): 210, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376892

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have driven research focused on their effects as oncogenes or tumor suppressors involved in carcinogenesis. However, the functions and mechanisms of most lncRNAs in colorectal cancer (CRC) remain unclear. METHODS: The expression of DLGAP1-AS2 was assessed by quantitative RT-PCR in multiple CRC cohorts. The impacts of DLGAP1-AS2 on CRC growth and metastasis were evaluated by a series of in vitro and in vivo assays. Furthermore, the underlying mechanism of DLGAP1-AS2 in CRC was revealed by RNA pull down, RNA immunoprecipitation, RNA sequencing, luciferase assays, chromatin immunoprecipitation, and rescue experiments. RESULTS: We discovered that DLGAP1-AS2 promoted CRC tumorigenesis and metastasis by physically interacting with Elongin A (ELOA) and inhibiting its protein stability by promoting tripartite motif containing 21 (Trim21)-mediated ubiquitination modification and degradation of ELOA. In particular, we revealed that DLGAP1-AS2 decreases phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) expression by inhibiting ELOA-mediated transcriptional activating of LHPP and thus blocking LHPP-dependent suppression of the AKT signaling pathway. In addition, we also demonstrated that DLGAP1-AS2 was bound and stabilized by cleavage and polyadenylation specificity factor (CPSF2) and cleavage stimulation factor (CSTF3). CONCLUSIONS: The discovery of DLGAP1-AS2, a promising prognostic biomarker, reveals a new dimension into the molecular pathogenesis of CRC and provides a prospective treatment target for this disease.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Neoplasias Colorretais/patologia , Elonguina/genética , Elonguina/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
8.
Redox Biol ; 54: 102357, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35679798

RESUMO

Ischemic injury to the heart induces mitochondrial dysfunction due to increasing oxidative stress. MG53, also known as TRIM72, is highly expressed in striated muscle, is secreted as a myokine after exercise, and is essential for repairing damaged plasma membrane of many tissues by interacting with the membrane lipid phosphatidylserine (PS). We hypothesized MG53 could preserve mitochondrial integrity after an ischemic event by binding to the mitochondrial-specific lipid, cardiolipin (CL), for mitochondria protection to prevent mitophagy. Fluorescent imaging and Western blotting experiments showed recombinant human MG53 (rhMG53) translocated to the mitochondria after ischemic injury in vivo and in vitro. Fluorescent imaging indicated rhMG53 treatment reduced superoxide generation in ex vivo and in vitro models. Lipid-binding assay indicated MG53 binds to CL. Transfecting cardiomyocytes with the mitochondria-targeted mt-mKeima showed inhibition of mitophagy after MG53 treatment. Overall, we show that rhMG53 treatment may preserve cardiac function by preserving mitochondria in cardiomyocytes. These findings suggest MG53's interactions with mitochondria could be an attractive avenue for developing MG53 as a targeted protein therapy for cardioprotection.


Assuntos
Proteínas de Transporte , Miócitos Cardíacos , Proteínas de Transporte/metabolismo , Humanos , Isquemia/metabolismo , Lipídeos , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Reperfusão
9.
Front Cardiovasc Med ; 9: 868632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711363

RESUMO

Rationale: While reactive oxygen species (ROS) has been recognized as one of the main causes of cardiac injury following myocardial infarction, the clinical application of antioxidants has shown limited effects on protecting hearts against ischemia-reperfusion (I/R) injury. Thus, the precise role of ROS following cardiac injury remains to be fully elucidated. Objective: We investigated the role of mitsugumin 53 (MG53) in regulating necroptosis following I/R injury to the hearts and the involvement of ROS in MG53-mediated cardioprotection. Methods and Results: Antioxidants were used to test the role of ROS in MG53-mediated cardioprotection in the mouse model of I/R injury and induced human pluripotent stem cells (hiPSCs)-derived cardiomyocytes subjected to hypoxia or re-oxygenation (H/R) injury. Western blotting and co-immunoprecipitation were used to identify potential cell death pathways that MG53 was involved in. CRISPR/Cas 9-mediated genome editing and mutagenesis assays were performed to further identify specific interaction amino acids between MG53 and its ubiquitin E3 ligase substrate. We found that MG53 could protect myocardial injury via inhibiting the necroptosis pathway. Upon injury, the generation of ROS in the infarct zone of the hearts promoted interaction between MG53 and receptor-interacting protein kinase 1 (RIPK1). As an E3 ubiquitin ligase, MG53 added multiple ubiquitin chains to RIPK1 at the sites of K316, K604, and K627 for proteasome-mediated RIPK1 degradation and inhibited necroptosis. The application of N-acetyl cysteine (NAC) disrupted the interaction between MG53 and RIPK1 and abolished MG53-mediated cardioprotective effects. Conclusions: Taken together, this study provided a molecular mechanism of a potential beneficial role of ROS following acute myocardial infarction. Thus, fine-tuning ROS levels might be critical for cardioprotection.

10.
Adv Sci (Weinh) ; 9(9): 2102620, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35356153

RESUMO

Tumor-associated macrophages (TAMs) are one of the most abundant cell types in colorectal cancer (CRC) tumor microenvironment (TME). Recent studies observed complicated "cross-talks" between cancer cells and macrophages in TME. However, the underlying mechanisms are still poorly elucidated. Here, PD-L1 levels are very low in CRC cells but highly abundant in TAMs, and a specific PD-L1+CD206+ macrophage subpopulation are identified, which is induced by tumor cells and associated with a poor prognosis. Mechanistic investigations reveal that CRC cells can secrete small extracellular vesicles (sEVs) taken up by macrophages that induce M2 like polarization and PD-L1 expression, resulting in increased PD-L1+CD206+ macrophage abundance and decreased T cell activity in CRC TME. sEV-derived miR-21-5p and miR-200a are identified as key signaling molecules mediating the regulatory effects of CRC on macrophages. Further studies reveal that CRC-derived miR-21-5p and miR-200a synergistically induces macrophage M2 like polarization and PD-L1 expression by regulating the PTEN/AKT and SCOS1/STAT1 pathways, resulting in decreased CD8+ T cell activity and increased tumor growth. This study suggests that inhibiting the secretion of specific sEV-miRNAs from CRC and targeting PD-L1 in TAMs may serve as novel methods for CRC treatment as well as a sensitization method for anti-PD-L1 therapy in CRC.


Assuntos
Antígeno B7-H1/metabolismo , Neoplasias Colorretais , Vesículas Extracelulares , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Vesículas Extracelulares/metabolismo , Humanos , Evasão Tumoral , Microambiente Tumoral , Macrófagos Associados a Tumor
11.
J Cell Mol Med ; 26(7): 1886-1895, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35199443

RESUMO

Nitrogen mustard (NM) is an alkylating vesicant that causes severe pulmonary injury. Currently, there are no effective means to counteract vesicant-induced lung injury. MG53 is a vital component of cell membrane repair and lung protection. Here, we show that mice with ablation of MG53 are more susceptible to NM-induced lung injury than the wild-type mice. Treatment of wild-type mice with exogenous recombinant human MG53 (rhMG53) protein ameliorates NM-induced lung injury by restoring arterial blood oxygen level, by improving dynamic lung compliance and by reducing airway resistance. Exposure of lung epithelial and endothelial cells to NM leads to intracellular oxidative stress that compromises the intrinsic cell membrane repair function of MG53. Exogenous rhMG53 protein applied to the culture medium protects lung epithelial and endothelial cells from NM-induced membrane injury and oxidative stress, and enhances survival of the cells. Additionally, we show that loss of MG53 leads to increased vulnerability of macrophages to vesicant-induced cell death. Overall, these findings support the therapeutic potential of rhMG53 to counteract vesicant-induced lung injury.


Assuntos
Lesão Pulmonar Aguda , Mecloretamina , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética , Animais , Células Endoteliais/metabolismo , Pulmão/metabolismo , Mecloretamina/uso terapêutico , Mecloretamina/toxicidade , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Recombinantes/metabolismo
12.
J Biomed Sci ; 29(1): 4, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039060

RESUMO

BACKGROUND: SLCO4A1-AS1 was found to be upregulated in several cancer types, including colorectal cancer (CRC). However, the detailed roles of SLCO4A1-AS1 in CRC remain to be elucidated. Therefore, we investigated the functions, mechanism, and clinical significance of SLCO4A1-AS1 in colorectal tumourigenesis. METHODS: We measured the expression of SLCO4A1-AS1 in CRC tissues using qRT-PCR and determined its correlation with patient prognosis. Promoter methylation analyses were used to assess the methylation status of SLCO4A1-AS1. Gain- and loss-of-function assays were used to evaluate the effects of SLCO4A1-AS1 on CRC growth in vitro and in vivo. RNA pull-down, RNA immunoprecipitation, RNA-seq, luciferase reporter and immunohistochemistry assays were performed to identify the molecular mechanism of SLCO4A1-AS1 in CRC. RESULTS: SLCO4A1-AS1 was frequently upregulated in CRC tissues based on multiple CRC cohorts and was associated with poor prognoses. Aberrant overexpression of SLCO4A1-AS1 in CRC is partly attributed to the DNA hypomethylation of its promoter. Ectopic SLCO4A1-AS1 expression promoted CRC cell growth, whereas SLCO4A1-AS1 knockdown repressed CRC proliferation both in vitro and in vivo. Mechanistic investigations revealed that SLCO4A1-AS1 functions as a molecular scaffold to strengthen the interaction between Hsp90 and Cdk2, promoting the protein stability of Cdk2. The SLCO4A1-AS1-induced increase in Cdk2 levels activates the c-Myc signalling pathway by promoting the phosphorylation of c-Myc at Ser62, resulting in increased tumour growth. CONCLUSIONS: Our data demonstrate that SLCO4A1-AS1 acts as an oncogene in CRC by regulating the Hsp90/Cdk2/c-Myc axis, supporting SLCO4A1-AS1 as a potential therapeutic target and prognostic factor for CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Neoplasias Colorretais/genética , Quinase 2 Dependente de Ciclina , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Proto-Oncogênicas c-myc , RNA Antissenso , Transdução de Sinais/genética
13.
Front Cell Dev Biol ; 9: 770006, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957102

RESUMO

Colorectal cancer (CRC) is one of the most common malignancies globally. Increasing evidence indicates that circular RNAs (circRNAs) play a pivotal role in various cancers. The present study focused on exploring the role of a functionally unknown circRNA, hsa_circ_0062682 (circ_0062682), in CRC. By online analyses and experimental validations, we showed that circ_0062682 expression was aberrantly increased in CRC tissues compared with paired normal tissues. Increased expression of circ_0062682 in CRC notably correlated with a poor prognosis and advanced tumor stage. Functional experiments showed that circ_0062682 knockdown reduced CRC growth both in vitro and in vivo. Mechanistically, we revealed that circ_0062682 could sponge miR-940 and identified D-3-phosphoglycerate dehydrogenase (PHGDH), a key oxidoreductase involved in serine biosynthesis, as a novel target of miR-940. Silencing miR-940 expression could mimic the inhibitory effect of circ_0062682 knockdown on CRC proliferation. The expression of PHGDH was downregulated in circ_0062682-depleted or miR-940 overexpressing CRC cells at both the mRNA and protein levels. Circ_0062682 knockdown suppressed CRC growth by decreasing PHGDH expression and serine production via miR-940. Taken together, these data demonstrate, for the first time, that circ_0062682 promotes serine metabolism and tumor growth in CRC by regulating the miR-940/PHGDH axis, suggesting circ_0062682 as a potential novel therapeutic target for CRC.

14.
J Exp Clin Cancer Res ; 40(1): 360, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782005

RESUMO

BACKGROUND: Small nucleolar RNA host gene (SNHG) long noncoding RNAs (lncRNAs) are frequently dysregulated in human cancers and involved in tumorigenesis and progression. SNHG17 has been reported as a candidate oncogene in several cancer types, however, its regulatory role in colorectal cancer (CRC) is unclear. METHODS: SNHG17 expression in multiple CRC cohorts was assessed by RT-qPCR or bioinformatic analyses. Cell viability was evaluated using Cell Counting Kit-8 (CCK-8) and colony formation assays. Cell mobility and invasiveness were assessed by Transwell assays. Tumor xenograft and metastasis models were applied to confirm the effects of SNHG17 on CRC tumorigenesis and metastasis in vivo. Immunohistochemistry staining was used to measure protein expression in cancer tissues. RNA pull-down, RNA immunoprecipitation, chromatin immunoprecipitation, and dual luciferase assays were used to investigate the molecular mechanism of SNHG17 in CRC. RESULTS: Using multiple cohorts, we confirmed that SNHG17 is aberrantly upregulated in CRC and correlated with poor survival. In vitro and in vivo functional assays indicated that SNHG17 facilitates CRC proliferation and metastasis. SNHG17 impedes PES1 degradation by inhibiting Trim23-mediated ubiquitination of PES1. SNHG17 upregulates FOSL2 by sponging miR-339-5p, and FOSL2 transcription activates SNHG17 expression, uncovering a SNHG17-miR-339-5p-FOSL2-SNHG17 positive feedback loop. CONCLUSIONS: We identified SNHG17 as an oncogenic lncRNA in CRC and identified abnormal upregulation of SNHG17 as a prognostic risk factor for CRC. Our mechanistic investigations demonstrated, for the first time, that SNHG17 promotes tumor growth and metastasis through two different regulatory mechanisms, SNHG17-Trim23-PES1 axis and SNHG17-miR-339-5p-FOSL2-SNHG17 positive feedback loop, which may be exploited for CRC therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/genética , Proteínas de Ligação ao GTP/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Animais , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica , Prognóstico , Análise de Sobrevida , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Eur J Pharm Sci ; 165: 105941, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34256102

RESUMO

Single-domain antibodies, VHHs or nanobodies, represent a promising set of alternatives to conventional therapeutic antibodies, gaining substantial attention in the field of cancer immunotherapy. However, inherent drawbacks of nanobodies such as fast clearance from blood circulation and lack of immune effector functions often led to unsatisfactory therapeutic efficacy. We previously reported that dinitrophenyl modification of an anti-EGFR VHH conferred Fc-dependent immune effector functions and elongated serum half-life on it through recruiting of hapten antibodies, resulting in improved immunotherapy efficacy in vivo. In the present work, we further tested the versatility of this approach in the case of an anti-PD-L1 blockade VHH (KN035). Site-specific dinitrophenyl conjugation did not impair the binding capacity of KN035 portion to PD-L1, but indirectly restored its immune effector functions, manifested by the observed antibody dependent cell-mediated cytotoxicity, antibody-dependent cellular phagocytosis and complement-dependent cytotoxicity against PD-L1 positive tumor cells. Significant delay of blood clearance of dinitrophenylated KN035 was evidenced by the prolonged half-life of ca. 22 h. This approach, using small hapten molecule conjugation, loaded additional antibody-mediated tumor killing mechanisms to PD-L1 blockade VHH and therefore improved efficacy is anticipated in the future in vivo therapeutic studies. Thus, our results underscore the power of this versatile approach for achieving desirable properties of VHH-based or similar therapeutics.


Assuntos
Antígeno B7-H1 , Neoplasias , Dinitrofenóis , Meia-Vida , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico
16.
JCI Insight ; 6(17)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34292883

RESUMO

Aging is associated with chronic oxidative stress and inflammation that affect tissue repair and regeneration capacity. MG53 is a TRIM family protein that facilitates repair of cell membrane injury in a redox-dependent manner. Here, we demonstrate that the expression of MG53 was reduced in failing human hearts and aged mouse hearts, concomitant with elevated NF-κB activation. We evaluated the safety and efficacy of longitudinal, systemic administration of recombinant human MG53 (rhMG53) protein in aged mice. Echocardiography and pressure-volume loop measurements revealed beneficial effects of rhMG53 treatment in improving heart function of aged mice. Biochemical and histological studies demonstrated that the cardioprotective effects of rhMG53 are linked to suppression of NF-κB-mediated inflammation, reducing apoptotic cell death and oxidative stress in the aged heart. Repetitive administration of rhMG53 in aged mice did not have adverse effects on major vital organ functions. These findings support the therapeutic value of rhMG53 in treating age-related decline in cardiac function.


Assuntos
Envelhecimento , Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , Proteínas de Membrana/genética , Miocárdio/metabolismo , NF-kappa B/genética , Estresse Oxidativo , Idoso , Animais , Apoptose , Modelos Animais de Doenças , Ecocardiografia , Feminino , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/metabolismo , Humanos , Masculino , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Miocárdio/patologia , NF-kappa B/biossíntese , RNA/genética , Transdução de Sinais
17.
Cancer Med ; 10(7): 2470-2481, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33686713

RESUMO

BACKGROUND: Accumulating evidences have shown that long noncoding RNAs (lncRNAs) play key roles in many diseases, including cancer. Several studies reported that MCM3AP antisense RNA 1 (MCM3AP-AS1) was associated with the tumorigenesis and progression. However, the specific function and mechanism of MCM3AP-AS1 in colorectal cancer (CRC) have not been fully understood. METHODS: The expression of MCM3AP-AS1 was detected by quantitative reverse transcription PCR (RT-qPCR) in CRC tissues and matched noncancerous tissues (NCTs). CCK-8 assay, colony formation assay, transwell assay, xenograft and lung metastasis mouse models were used to examine the tumor-promoting function of MCM3AP-AS1 in vitro and in vivo. The binding relationship between MCM3AP-AS1, miR-193a-5p and sentrin-specific peptidase 1 (SENP1) were screened and identified by databases, RT-qPCR, dual luciferase reporter assay and western blot. RESULTS: In the present study, we got that the expression of MCM3AP-AS1 was higher in CRC tissues than in paired NCTs, and increased MCM3AP-AS1 expression was associated with adverse outcomes in CRC patients. Functional experiments in vitro revealed that silencing of MCM3AP-AS1 could inhibit the proliferation, colony formation, migratory, and invasive abilities of CRC cells. The mouse models of xenograft and lung metastasis further confirmed that in vivo silencing MCM3AP-AS1 could significantly inhibit the growth and metastasis of CRC. Further mechanism studies indicated that MCM3AP-AS1 could sponge miR-193a-5p and inhibit the activity of it. What is more, SENP1 was proved to be a novel target of miR-193a-5p and could be upregulated by MCM3AP-AS1. At last, we observed that SENP1 overexpression in CRC tissues was closely related to unfavorable prognosis. CONCLUSION: Taken together, we identified in CRC the MCM3AP-AS1/miR-193a-5p/SENP1 regulatory axis, which affords a therapeutic possibility for CRC.


Assuntos
Acetiltransferases/metabolismo , Neoplasias Colorretais/metabolismo , Cisteína Endopeptidases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Acetiltransferases/genética , Animais , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Inativação Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica/genética , Transplante de Neoplasias , Prognóstico , RNA Antissenso/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ensaio Tumoral de Célula-Tronco , Regulação para Cima
20.
Pathol Res Pract ; 216(10): 153104, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32853944

RESUMO

Recently, a growing body of studies has demonstrated that long non-coding RNA (lncRNA) can act as microRNA (miRNA) sponges to regulate protein-coding gene expression and play essential roles in tumor initiation and progression. In the present study, we constructed a competitive endogenous RNA (ceRNA) network and identified potential regulatory axes in colorectal cancer (CRC) through both bioinformation and experimental validation. Firstly, we obtained differentially expressed (DE) lncRNAs, miRNAs, and mRNAs by analyzing the RNA expression profiles of CRC retrieved from The Cancer Genome Atlas (TCGA) database and CRC patients' data from affiliated Hospital of Jiangnan University, respectively. Then, we established a ceRNA regulatory network of CRC that includes 23 lncRNAs, 7 miRNAs and 244 mRNAs. To further identify these lncRNA-miRNA-mRNA regulatory axes which might play vital roles in CRC tumorigenesis and prognosis, we performed additional analyses using comprehensive bioinformatic methods. Several ceRNA regulatory axes, which consist of 2 lncRNAs, 2 miRNAs and 5 mRNAs, were obtained from the network. Finally, the interactions and correlations among these ceRNA networks were validated by experiments on CRC cell lines and clinical tumor tissues, and a potential IGF2-AS/miR-150/IGF2 axis that perfectly conform to the ceRNA theory was determined. According to the qRT-PCR results, miR-150 overexpression remarkably decreased IGF2-AS and IGF2 expression. Meanwhile, IGF2-AS expression was positively correlated with IGF2 expression in tumor tissue of CRC patients. Besides, dual luciferase reporter assays indicated that miR-150 could bound to IGF2-AS and the 3'UTR of and IGF2. In general, the constructed novel IGF2-AS/miR-150/IGF2 network might provide potential mechanisms of CRC development, and could act as a promising target for CRC treatment.


Assuntos
Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Fator de Crescimento Insulin-Like II/genética , MicroRNAs/genética , Adulto , Idoso , Biomarcadores Tumorais/genética , Transformação Celular Neoplásica/genética , Neoplasias do Colo/patologia , Neoplasias Colorretais/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...